Skip to content

Molecular Projected DOS

NO molecule on Ni(001)

For this example we calculate the projected MOs of a NO molecule on a Ni(001) slab. In the following the required input files are:

no-on-ni001.param, no-on-ni001.cell, no-on-ni001.molpdos, gasphase.cell, gasphase.param, gasphase.check

no-on-ni001.param

    calculate_modos     : true
    deltascf_checkpoint :  gasphase

    task: SinglePoint

    spin_polarized : True
    cut_off_energy : 400.0
    elec_energy_tol : 1e-07
    fix_occupancy : False
    iprint : 1
    max_scf_cycles : 200
    metals_method : dm
    mixing_scheme : Pulay
    nextra_bands : 10
    num_dump_cycles : 0
    opt_strategy_bias : 3
    smearing_scheme : Gaussian
    smearing_width : 0.1
    xc_functional : RPBE

no-on-ni001.cell

    %BLOCK LATTICE_CART
        3.5240000000 0.0000000000 0.0000000000
        0.0000000000 3.5240000000 0.0000000000
        0.0000000000 0.0000000000 23.0000000000
    %ENDBLOCK LATTICE_CART

    %BLOCK POSITIONS_ABS
        Ni 1.762000 0.000000 1.762000
        Ni 0.000000 1.762000 1.762000
        Ni 0.000000 0.000000 3.524000
        Ni 1.762000 1.762000 3.524000
        Ni 1.762000 0.000000 5.286000
        Ni 0.000000 1.762000 5.286000
        N  1.7620  0.0000  7.0196
        O  1.7620 -0.0000  8.1902
    %ENDBLOCK POSITIONS_ABS

    %BLOCK IONIC_CONSTRAINTS
         1  Ni   1   1 0 0
         2  Ni   1   0 1 0
         3  Ni   1   0 0 1
         4  Ni   2   1 0 0
         5  Ni   2   0 1 0
         6  Ni   2   0 0 1
         7  Ni   3   1 0 0
         8  Ni   3   0 1 0
         9  Ni   3   0 0 1
        10  Ni   4   1 0 0
        11  Ni   4   0 1 0
        12  Ni   4   0 0 1
        13  Ni   5   1 0 0
        14  Ni   5   0 1 0
        15  Ni   5   0 0 1
        16  Ni   6   1 0 0
        17  Ni   6   0 1 0
        18  Ni   6   0 0 1
    %ENDBLOCK IONIC_CONSTRAINTS

    FIX_ALL_CELL : True
    KPOINTS_MP_GRID : 2 2 1
    KPOINTS_MP_OFFSET : 0.25 0.25 0.25

no-on-ni001.molpdos

    molpdos_state        :  4        1
    molpdos_state        :  5        1
    molpdos_state        :  6        1
    molpdos_state        :  4        2
    molpdos_state        :  5        2
    molpdos_state        :  6        2
    molpdos_bin_width    :  0.01
    molpdos_smearing     :  0.10
    molpdos_scaling      :  1.00
    axis_energy_margin   :  2.00
    output_filename      :  MolPDOS.dat

gasphase.cell

    %BLOCK LATTICE_CART
        3.5240000000 0.0000000000 0.0000000000
        0.0000000000 3.5240000000 0.0000000000
        0.0000000000 0.0000000000 23.0000000000
    %ENDBLOCK LATTICE_CART

    %BLOCK POSITIONS_ABS
        N  1.7620  0.0000  7.0196
        O  1.7620 -0.0000  8.1902
    %ENDBLOCK POSITIONS_ABS

    FIX_ALL_CELL : True
    KPOINTS_MP_GRID : 2 2 1
    KPOINTS_MP_OFFSET : 0.25 0.25 0.25

gasphase.param

    task: SinglePoint

    spin_polarized : True
    cut_off_energy : 400.0
    elec_energy_tol : 1e-07
    fix_occupancy : False
    iprint : 1
    max_scf_cycles : 200
    metals_method : dm
    mixing_scheme : Pulay
    nextra_bands : 10
    num_dump_cycles : 0
    opt_strategy_bias : 3
    smearing_scheme : Gaussian
    smearing_width : 0.1
    xc_functional : RPBE

After generating gasphase.check by running CASTEP on the gasphase.param and gasphase.cell files, we execute CASTEP and post-process with MolPDOS. This will write x-y data files for the Total DOS, the separate spin channels, and the MolPDOS peaks.

The following image shows the Total DOS and the two spin channels.

Total DOS and Two Spin Channels

The next picture shows the frontier orbitals of spin channel 1 projected on the total DOS. Especially the LUMO shows strong hybridization with the Nickel d-bands and also is partially occupied. The left scale refers to the total DOS, whereas the right y-scale shows the peak height of the projected MOs.

Frontier orbitals of spin channel 1 projected on the total DOS


GOOD TO KNOW

If you ever forget the correct input for <seed>.molpdos, just run the MolPDOS tool without seed. The printed information is all you need!