Skip to content

Simple Delta SCF

Electronic excitations of the Azobenzene molecule

In this example we calculate the first two electronic excited states of E-Azobenzene in a supercell.

The required files are azo.cell and azo.param:

azo.param

    task: SinglePoint

    reuse: default
    calculate_deltascf  : true
    deltascf_method     : simple
    deltascf_smearing   : 0.01

#band  occ spin from_band to_band
%block deltascf_constraints
34    0.5000  1   34   34       
35    0.5000  1   35   35
%endblock deltascf_constraints

    spin_polarized : False
    cut_off_energy : 350.0
    elec_energy_tol : 1e-07
    fix_occupancy : False
    iprint : 1
    max_scf_cycles : 200
    metals_method : dm
    mixing_scheme : Pulay
    nextra_bands : 10
    num_dump_cycles : 0
    opt_strategy_bias : 3
    smearing_scheme : Gaussian
    smearing_width : 0.1
    xc_functional : PBE

azo.cell

    %BLOCK LATTICE_CART
        10.0000000 0.0000000000 0.0000000000
        0.0000000000 20.0000000 0.0000000000
        0.0000000000 0.0000000000 10.0000000000
    %ENDBLOCK LATTICE_CART

    %BLOCK POSITIONS_ABS
    C         -6.72081       -1.66625        0.00000
    C         -6.64967       -0.26964        0.00000
    C         -5.40647        0.36858       -0.00000
    C         -4.23175       -0.38857       -0.00000
    C         -4.29745       -1.78579       -0.00000
    C         -5.54882       -2.43430       -0.00000
    H         -7.68820       -2.15296        0.00000
    H         -7.55879        0.31772        0.00000
    H         -5.35348        1.44963       -0.00000
    H         -3.26966        0.10734       -0.00000
    H         -3.37789       -2.35693       -0.00000
    N         -5.65342       -3.85046       -0.00000
    N         -4.64259       -4.58194       -0.00000
    C         -4.75058       -5.99808       -0.00000
    C         -6.00434       -6.64214       -0.00000
    C         -6.07567       -8.03881       -0.00000
    C         -4.90409       -8.80053       -0.00000
    C         -3.65828       -8.16721       -0.00000
    C         -3.58139       -6.77065       -0.00000
    H         -2.61200       -6.28795       -0.00000
    H         -6.92178       -6.06761       -0.00000
    H         -7.03986       -8.53061       -0.00000
    H         -4.96168       -9.88134       -0.00000
    H         -2.75170       -8.75849       -0.00000
    %ENDBLOCK POSITIONS_ABS

    FIX_ALL_CELL : True
    KPOINTS_MP_GRID : 1 1 1

We start by calculating the total DFT ground state energy as

    Final energy, E             =  -2597.665647686     eV

Now we reuse the calculated wavefunctions and switch to the DeltaSCF calculation (param file above)

There are 68 valence electrons. Therefore, for this non-spin-polarized system the HOMO orbital is orbital no. 34. The LUMO is orbital no. 35.

The first two excited states of azobenzene are known to be S1(n->pi*) and S2(pi->pi*) transitions between the HOMO and LUMO and the HOMO-1 and the LUMO.

The corresponding constraint sequence in azo.deltascf for the S1 excitation is

#band  occ spin from_band to_band
%block deltascf_constraints
  34    0.5000  1   34   34       
  35    0.5000  1   35   35      
%endblock deltascf_constraints

WARNING

When running non-spin-polarized calculations, orbital occupations range from 0 to 1. !!When running a spin-polarized calculation, they also range from 0 to 1, although they contain 0 to 2 electrons. In this (non-spin-polarized) case, if we want to transfer an electron from the HOMO(34) to LUMO(35) we need to enforce the occupation of both to be 0.50.


Feel free to increase the print level with iprint to study the output in more detail.

The corresponding total energy is

    Final energy, E             =  -2595.702720896     eV

This corresponds to an S1 excitation energy of 1.96 eV.

The constraint sequence for an S2 excitation is

#band  occ spin from_band to_band
%block deltascf_constraints
33    0.5000  1   33   33
35    0.5000  1   35   35      
%endblock deltascf_constraints

The resulting final energy is

    Final energy, E             =  -2594.762182241     eV

The corresponding S2 excitation energy is 2.90 eV.